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The relation between the discrete and continuous models of a one-dimensional viscoelastic medium is discussed. Beginning with 
the discrete model, for the linear case it is shown how to construct a series of partial differential equations which might be thought 
of as intermediate between the differential-difference equation for a chain of discrete masses and the equation for a continuous 
medium. For these intermediate equations (one of which will be, in particular, the equation of a vibrating continuous medium) 
we give the conditiom under which one is justified in replacing the initial continuous model by a discrete chain. For the 
non-linear case, the analogue of the Fermi-Pasta-Ulam (FPU) problem with strongly non-linear constraints is considered. This 
version of the FPU problem can be applied to a chain with non-linear viscoelasticity. O 1997 Elsevier Science Ltd. All rights 
reserved. 

1. C O N T I N U O U S  M O D E L S  

It is usual to study the longitudinal vibrations of one-dimensional systems with relaxation and creep 
using a continuot~ model, that is, by studying the vibrations of the corresponding continuous medium, 
described by the equation 

Puu = G x - "qut + f ,  11 = const > 0 (1.1) 

and a certain constitutive relation (a relation between the unknown functions e and a). Here e(x, t) = 
ux(x, t),  and u(x,  t) and  a(x ,  t)  are,  respectively, the longitudinal displacement and stress of the one- 
dimensional continuous medium in section x at time t; p = const > 0 and f(x, t) are, respectively, the 
linear mass densities and applied distributed load. 

Linear constitutive relations are frequently used to illustrate discrete mechanical models made up 
of combinations of Hooke's, Newton's and other elements [1-3]. For instance, for a "standard" 
viscoelastic material, the constitutive relation can be put in the form [4] 

where L 0, L1, be, bl are certain constants and e = ux. 
It is quite conmlon in the linear theory of viscoelasticity in the general case to consider a constitutive 

relation of the form [1] 

ZLr-qTT~ a = 2, r'~'~'r E (1.2) 
r=O ~t  r=O Of 

where Lr, b, are certain constant coefficients. In that case, eliminating the function a from (1.1) and 
(1.2), the equation obtained for the function u is [1] 

R! ~r R ~r+2 
~ L r - - ( p u  n + ' O u t - f ) =  ~ b r ~  
r=0 ~t r r=O ~tr~x2 U 

(1.3) 

For bounded media, boundary conditions for Eq. (1.3) can be assigned in the form 

?Pdk& Mat. Mekh. Vol. 61, No. 2, pp. 285-296, 1997. 

275 



276 A . M .  Filimonov 

u(O, t) = u(l, t) = 0, l > 0 (1.4) 

for example. 
As far as the initial conditions are concerned, the constitutive relation (1.3) implies that the particular 

continuous medium possesses a memory [3, 4]. Thus, to be able to construct a unique solution, in addition 
to the usual initial conditions for the function (x, t) --> u(x, t) 

u(x, 0) = 130(x), ut(x, 0) = 131(x) (1.5) 

wherex -> ~(x) ,x --> I~l(x) are given functions, it is also necessary to describe the evolution of the medium 
for t < 0, or assign its initial state, for example, by indicating the functions 

X -"-> O(X,0) . . . . .  X -"> ~ R I - I o ( x , O ) / ~ t R I - I  (1.6) 

If we know the functions (1.5) and (1.6), we can uniquely determine all the necessary initial conditions 
for the function (x, t) --~ u(x, t) from the pair of equations (1.1), (1.2) 

~R-I 
u(x,O) = l~o(X) ..... btR_ ~ u(x,O) = 13R_I(X), R = max{R l +2,R2} (1.7) 

(In mechanics, as a rule, either R 1 = R 2 o r  R 1 - -  R 2 - 1 [1].) 

2. D I S C R E T E  M O D E L S  

The study of  the vibrations of a system described by a mechanical model in the form of a discrete 
chain of physical points joined by links with relaxation and creep involves an analysis of a system of 
two differential-difference equations (DDE),  comprising the equation 

my=sj+l--Sj--~j'l"6, ~=cons t  > 0  (2.1) 

(m is the mass of point j, Fj is the external longitudinal force applied to point j  and sj is the force with 
which point j  acts on point (] - 1)), and the equation 

~ L  dr ~Br6Aj, A, (2.2) r ~ Sj = = Yj  -- Y j - I  
r=0 dt  r=0 dt  

which is used as the constitutive relation. Here  L ,  Br are certain constants. 
Eliminating sj, say, from (2.1) and (2.2), we obtain the differential-difference equation ("chain") 

R! d r R d r 
E Lr ~ (my) + ~.~j - Fj ) = ~ B r - Y j - I )  (2.3) 
r=O dt r r=0 ~-tr(yj+l--2y) 

Remark. Equations which contain the operations of differentiation and taking the difference, each with respect 
to the same argument, are sometimes referred to as differential-difference equations (see [5], for example). However, 
following the classical tradition [6], the term differential-difference equation will be used here for equations in 
which the operations of differentiation and taking the difference are with respect to different arguments. 

For Eq. (2.3) we can also set boundary conditions of the form 

yo(t) = yN(t) = 0 (2.4) 

for example, and initial conditions similar to conditions (1.7) 

yj (0) = COo(j) ..... y~R-')(O) = OCR_ I (j), j = 1 ..... N -  1 (2.5) 

The sets {oto(j) } .... , {¢%R-I(J)} are assumed given. 
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3. THE R E L A T I O N  BETW E E N THE C O N T I N U O U S  AND 
D I S C R E T E  MODELS IN THE L I N E A R  CASE 

Problem (2.3), (2.4) and (2.5) can be thought of as a possible scheme of the method of straight lines 
[7, 8] for problem (1.3), (1.4), (1.7) 

m = ph, B r= b,jh, ~ = rlh, N = lh (3.1) 

(the parameter h > 0 acts as the distance between physical points in a state of static equilibrium) and 
the functions (x, t) ---> f ( x , t ) , x  --> ~lr(x) (r = 0 , . . .  , R  - 1) are associated in one way or another with the 
functions t ---> Fj(t) and sets {o~(j)}, r = 0 . . . .  , R - 1. One possible question is whether the solution of 
that system converges to the solution of the problem for Eq. (2.3). 

For certain problems, as in the theory of viscoelasticity, it seems more natural to start with the 
continuous model, but for others, as in solid-state physics or for the generalized Zhukovskii problem 
[9], it is better to start with the discrete model. However, it is impossible on mathematical grounds to 
decide from which of the two models, discrete or continuous, to start and which should be taken as its 
approximation. In that sense, the two models can be regarded as equivalent. 

The obvious question that arises is in some ways the dual of the question of the convergence of the 
method of straight lines: if we start with a discrete chain, how well does the continuous model reflect 
the properties of its solutions? 

Also, in the method of straight lines one could attempt to improve the accuracy of the approximation 
of the functionsyj(t) to the solution u(x, t) for x = jh  by increasing the number of points N and thereby 
reducing the value of h, while preserving the quantities p, L, ,  b,, 11 and the functions (x, t) ---> f(x, t). 
However, if the initial discrete chain is fixed (that is, the quantitiesx --> I~r(X) are fixed and the functions 
N, h, m, L,, B,, g a:nd sets t ---> Fj(t) are given), how can one reduce the quantity l Yj(t) - u(jh,  t) l? 

We know from the theory of difference schemes (see [10], for example) that various schemes of the 
method of straight lines can be used to approximate a given partial differential equation. Equation (2.3), 
regarded as one possible scheme, is typical insofar as it has an immediate physical interpretation. 

However, there is no unique partial differential equation whose solutions will approximate the solution 
of the original equation even in the case of the DDE (2.3). Naturally, not every partial differential 
equation of this kind will have a direct physical interpretation. In the non-linear case, we have the 
example of the Boussinesq equations (relative to the function ux) considered in [11]. 

( h2 / 
Put, = E I Uxx + - ~  Uxxxx + 3bh2u2Uxx 

and Eq. (1.1) (with r I = O,f(x, t) = 0) with the constitutive 

(3.2) 

o = E t E + b l e l P s g n ( e )  (Et>~O, b>0,  p=3)  (3.3) 

considered in [12]. These equations correspond to continuous models for Eq. (2.1) (with ~ = O, Fj(t) 
= 0) with the constitutive relation 

• s j = c t A j + B I A j l P s g n ( A j )  ( q > O ,  B>0, p = 3 )  (3.4) 

(the problem of ~lding periodic solutions of Eq. (2.1) with a non-linear constitutive relation is known 
as the Fermi-Pasa.-Ulam problem [13]). 

4. C O N T I N U O U S  MODELS OF D I S C R E T E  CHAINS 

Since the question of how to construct difference schemes of the method of straight lines for partial 
differential equations has been studied thoroughly, we will concentrate slightly more on various methods 
of constructing continuous analogues of discrete chains. 

One of the most common methods of constructing continuous analogues is the following. The discrete 
1 variable j e 7/is formally replaced by the continuous variable x ~ R , and the function (j, t) ---> yj(t) is 

replaced by the function (x, t) ---> Z(x,  t), such that Z(jh,  t) = yj(t), where the constant h > 0 is taken as 
the distance between adjacent points in a state of equilibrium. If the function (x, t) ---> Z(x,  t) is analytic 
with respect to x, at each point x = jh  it can be expanded in terms of the variable x and substituted into 
the equation of the chain. Confining ourselves to terms of order with respect to h not higher than some 
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d > 0, we obtain the partial differential equation which is taken as the continuous analogue of the chain. 
Equation (3.2) of [11] was obtained in this way. 

We will now go through this method of obtaining a continuous analogue in detail, using the example 
of chain (2.3). We introduce the function (x, t) ~ Z(x, t) such that Z(jh, t) = yj(t). Formal expansion at 
each point x = jh  yields the equation 

. . .  . ** 2h2n ~2n 
mZ(jh,  t) + ~Z(jh, t) = c ~ ~ Ox2n Z(jh, t) + Fj (t) 

~=l(2n)! 
(4.1) 

Confining ourselves to terms on the right-hand side of Eq. (4.1) which are of order with respect to 
h not higher than some fixed d I> 0, and replacing the function t --, Fj(t) by some function (x, t) ~ hf(x, 
t), we obtain the approximate continuous model of chain (2.3) in the form 

M 2hZn O2n 
mutt (x,  t) + ~u t (x,  t) = c ~. --~---~,f n=l(2n). Ox 2nu(x't)+ h f (x ' t )  (4.2) 

where 2M = d. 

Definition. A n  equation of type (4.2), obtained by discarding terms of order higher than d with respect 
to h is called an intermediate continuous model of the original chain of order d. In particular, putting 
d = 2 in (4.2), we obtain the usual wave equation, and putting d = ~o, we formally obtain a differential- 
difference equation for a chain. 

The difference between Eq. (4.1) and Eq. (4.2) even when d = oo is worth noting: (4.2) holds for all 
x ~ [0,/], whereas (4.1) holds only for a finite number ofvaluesx = j h  ~ [0,/],j = 0 . . . . .  N. 

Thus, generally speaking, neither the extension of values of the functions t --> Fj(t) to all x ~ [0,/] 
(that is, the choice of the function (x, t) -->f(x, t)) nor the condition that should be satisfied by the equation 
instead of (4.1) whenx ~ jh  is unique. It is usually assumed that the same equation is satisfied forx 
jh  also, but in principle there are other possibilities. 

It is widely thought that if the number of physical points is large and the distances between them are 
small, then this system moves in a similar way to the corresponding continuous medium (see [14-16], 
for example). This was believed even at the time of the famous dispute about the vibrations of a string 
between D'Alembert, Euler, Bernoulli and Lagrange. 

However, it is assumed right from the start when deriving Eq. ( 1.1 ) (unlike Eq. (4.1) ) that it is satisfied 
for all x e [0,/] (this follows from the actual representation of the continuous medium). This is one 
obvious explanation for a possible fundamental difference in the nature of the solutions for a chain 
and a continuous medium (see [17, 18], for example). 

Two problems arise when considering how close the solutions of the discrete and continuous models 
a r e .  

Problem 1. For a given fixed discrete chain, is there a continuous model for which the quantity 
lYj(t) - u(]h, t) I is sufficiently small in some interval of time? 

Problem 2. For a given fixed continuous model and a chain of given form, is it possible to choose the 
number of points and other numerical parameters of the chain to give a sufficiently small quantity 
I yj(t) - u(jh, t) I in some interval of time? 

The question posed in Problem 2 was answered in the affirmative in the case of the wave equation 
by D. Bernoulli and Lagrange [14, 15]. 

Our reason for agreeing with this is that if, formally, we take the limit as N --> ~, h --> 0 in the problem 
for a chain (2.3), (2.4), (2.5) with R1 = R2  = 0,  L0 = 1, ~ = 0 under conditions (3.1), we obtain the 
solution of the corresponding the problem (1.3)-(1.5). 

A rigorous justification for taking the limit can be obtained from a proof that the method of straight 
lines converges in the case of the wave equation. A proof for any fixed time interval is given in [7, 8], 
for example. 

In this connection, in a number of publications of an applied nature it is assumed that the solutions 
of problems (2.3), (2.4), (2.5) and (1.1), (1.4), (1.5) can be regarded as close if the number N is large 
enough. This approach is often used when the solutions of problems for a discrete chain are investigated 
by replacing it by the corresponding continuous medium. It is essentially this method that is used, in 
particular, by Zhukovskii [9] (see also [19]). 

However, it was shown in [17, 18] that the solutions of the problems for a chain and the corresponding 
continuous medium in an unbounded time interval might differ, and the larger the number of points 



Continuous and discrete models of bounded one-dimensional media 279 

N, the greater the difference could be (in any case if it is a prime number or a power of  two), since the 
chain might experkmce the so-called surge effect. 

An obvious question is how to construct a more exact equation than the wave equation which would 
descn~oe the surge effect in particular. We shall show that (4.2) can be used for that purpose. To determine 
the form of the corresponding boundary conditions, we note that for ~ = 0 Eq. (4.2) is the Euler-Poisson 
equation for the following functional, which plays the role of  an effect (in the notation of  (3.1)) 

-, ) 
pu2t + u f  + E ~. u dxdt  

oo~,'- .=l (2n)! 

with boundary conditions 

~2n ~2n 
u(O,t)=__--=r:-_~.u(l,t)=O, n = 0  ..... M ~X 2. OX'"  : 

(4.3) 

A question which naturally rises is whether problem (4.2), (4.3), (1.7) is well posed. To widen the 
range of applications, we will examine this question in a slightly more general form. 

In the rectangle II(T0) = {(x, t) I 0 ~< x ~< l, 0 ~< t ~< To), where I > 0, To > 0 are certain constants, 
consider the equation 

t¢ r P H ~)r U_ 2h 2n ~2. 
x rr u:2 X O, h=± (4.4) 

r=O Ot r=O N 

with initial conditions (1.7) and boundary conditions (4.3). Here  Fr(r = 0 , . . . ,  R ) ,  Hr  (r = 0 . . . . .  P ) ,  
l > 0, N ~ M are given constants and  (x, t)  --> g(x,  t), x --+ ~r(x) (r = 0 . . . . .  R - 1) are given functions. 
Clearly, without loss of generality, it can be assumed that F a > 0. Suppose that R > P. Putting u(x,  t)  
= 0(t)V(X), we can establish that the eigenfunctions x ---> Yk(X) and eigenvalues Xfc (k = 1 , . . . )  of the 
corresponding homogeneous problem have the form 

Vk(x) : sin uk'x ~'k ~ (- l)"  (xkh~2" = - , . , - -  ~ , k = l , .  ( 4 . 5 )  
l ' n = l ( 2 n ) ! ( ,  l ) "" 

Figure 1 shows how the eigenvalues ~t k (that is, the eigenvalues ~ as M--~ % the dashed curve) and 
the eigenvalues X~ depend on k for M = 1 (the wave equation), M = 2q and M = 2q + 1, where q is a 
sufficiently large m,tural number. 

It follows from (4.5) that all X~ > 0 (k = 1 . . . .  ) only i f M  is an odd number. In the simplest special 
case, where R = 2, P = 0, F0 = F1 = 0, F2 = m ,  Ho  = c, Gj ( t )  = 0 (j = 1 , . . . ,  N -  1), that is, where 
Eq. (4.4) corresponds to the intermediate continuous model for the classical problem of a vibrating 
beaded thread, Xe > 0 (k = 1 , . . . )  is a necessary condition for (4.3), (4.4), (1.7) to be a well-posed 

Fig. 1. 
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problem, since it ensures that none of  the functions 0k(t; Xt) increases exponentially (as I ~ I ---> +**) 
in solutions of the form Uk(X, t) = 0k(t; Xt)Wk(X). In the general case, however, some additional 
assumptions are required to ensure that the problem is well posed. 

Let %(t; A ) , . . . ,  ~PR-I(t; A) be a fundamental system of solutions of  the equation 

R d r p r 
~ F r  d A Enr-73-r ca = 0 
,=0 d-7 q~+ ~=0" at 

(4.6) 

with the functions t ---> %(t; A) chosen so that 

d r  
dt' q~s(0;~')=8"i' r = 0  ..... R - l ;  s = 0  ..... R - I  (4.7) 

where 5 r is the Kroneeker delta. Suppose that there are constants D > 0, v > 0 and a smooth function 
t ---> f~(t) I> 0, fl(t)/> 0, f~(0) = 0 for which, for each solution 9s(t; A), (s = 0, . . . ,  R - 1), the condition 

cPs(t, 2.)~<D(ArV+l)O(t)< oo, r=O ..... R-1 (4.8) 

is satisfied. 

Suppose, for examp!e, that Eq. (4.6) corresponds to the classical problem of a vibrating beaded thread. 
Then %~t; A) = eos(t ~l(cA/m)), %(t; A) = sin(t q(cAlm))N(cAlm), so that we can put D = max{l, c/m}, v = 1, 
~ ( t )  = : /2 .  

Finally, to ensure that problem (4.3), (4.4), (1.7) is well posed (if the solution is understood in the 
classical sense) we make the following assumptions: 13r ~ Cq[0,/], g ~ Cq[0,/] 

o2n 2~_~n 02n o2n 
~ r ( 0 ) =  v ~ ,  ~r(l)=O' O-~T~g(O't)= ~ - ~  g(l't)=O OX 2n 

r = 0  ..... R - l ;  n=O ..... MRv; q>~2MRv+I  
(4.9) 

It can be shown by standard arguments that, under the above assumptions, problem (4.3), (4.4), (1.7) 
is well posed. 

5. A P P R O X I M A T I O N  T H E O R E M S  

Thefirst approximation theorem. Assuming, as before, that F R > 0, R > P, we consider the following 
problem for a chain 

R d r p r 
E r r  d = ZHr ' - j -~ . r (Y j+ l  -yj_ll+Gy(t) (5.1) r=0 ~ y j  - 2 y j  r=0 at 

with boundary and initial conditions (2.4) and (2.5). 
The corresponding problem for the intermediate equation has the form (4.3), (4.4), (1.7) with Hr = 

Br (r = 0 , . . . ,  P). Suppose that the conditions under which this problem is well posed are satisfied. 
Let 

2 N-I * . 2 N-I . , . 
g ( x , t ) = - -  Y. Gj(t)O~_t(x,j), ~r(X)=-~ j~llXr(J)D~c_l(X,J), r = 0  ..... R - 1  Nh j=t 

• (-N(~ " h ) ] -  DN_J(N( . + h ) ) j  , s i n ( a ( N - ~ ) )  DN_I(x,j)=DN_ l J -  D~_~(a) = 2sin(a / 2) 

(DN_I(.) is the Diriehlet kernel). 
Then for any 0 ~< t ~< To (To > 0) 
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T O ~2M+2 
[y j ( t ) - u(jh, t) <<- K Z ( i2( r o ) exp( 5C2 T 0) + ! f2( t ) expf 5C2t )dt ) 

(2M + 2)~ 

K I = 2NC I maxIRmax[Ctr(j)  I, sup Gi(t)[l((4+ n 4 112) Rv + 1) 
I. j,r j.t~T 0 " j 

C, := DP max l n r l / r  R, C2 = Rmax ~ max IrA max lHrl~/rR 
O~r~P I.O~r~R-I" " O~r~P J 

(5.2) 

The proof of this theorem is given in the Appendix. 

Corollary. Clearly, since 

lim /t 2 M + 2 / ( 2 M + 2 ) ! = 0  
M--¢~ 

by choosing a sufficiently large odd number M for a fixed value of N the quantity I y~(t) - uqh,  t) I can 
be made as small as desired in any finite interval [0, To]. Thus, Theorem 1 provides a solution of 
Problem 1. 

The second appr~ndmation theorem. Now consider the problem for the intermediate equation (4.4) 
with Fr = h¥,, r = 0, . . . , R,  Hr = b/h ,  r = 0 , . . . ,  P. Problem (4.3), (4.4), (1.7) can be regarded as an 
intermediate continuous model for the chain (5.1), (2.4), (2.5). The quantities Yr (r = O, . . . .  R) ,  br (r 
= 0 , . . . ,  P), l > 0, number M ~> 1, and functions x ~ I~x) (r = 0 , . . . ,  R - 1), (x, t) ~ g(x, t) which 
characterize the continuous model will be taken as given. For each N ¢ N we put h = h(N) = IlN. 

Suppose that the conditions for problem (4.3), (4.4), (1.7) to be well posed are satisfied for each h. 
Let 

I , h 
Gj(t)  = --[ ~ g(x,t)D~/_t(x,j)dx, 

r = 0  ..... R - I  

l 1 • . 
O~r{J} = 7 ~ ~r(X)DN-I(X'J)dX 

Then for any No ~ N a n d  N ~ N such that N I> No, we have 

yj ( t )  - u(jh, t) <~ K6~ t (T O )(N~M+3N -xg exp(K3NoT 0 ) + N~ I ) 

K 2 = 2  Dl 2 ~(R maxll3[ (Xr,x , )l, + xS?~PTo [gxx (X , t ) l /TR )1  ~2 

_ _  ¢ + -  ÷ K 4 = C 2 4 1 2 '  K 3 = G I 2 ( 2 M + 2 ) !  12) 

C" ' ) f~ ( r  o ) = sup ~(t) + ~(t) + a( t )  exp(Gt) + I ~(t) e×p(Gt)dt 
t~N\ 0 

(5.3) 

The proof of this theorem is given in the Appendix. 

Corollary. For a number No so chosen that K.~I(T0)N0 -1 is sufficiently small, we choose a value of N 
for which 

N >~ N~ M+3 exp(aK3NoTo), a > i 

Then the right-hand side of the bound (5.3) can be made as small as required by choosing sufficiently 
large No and N of the given form. Thus, Theorem 2 gives a solution of Problem 2. 
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6. S Y S T E M S  W I T H  N O N - L I N E A R  R E L A T I O N S  AND 
N O N - L I N E A R  C R E E P  A N D  R E L A X A T I O N  

Suppose that the basic equation of motion has the form (2.1), but instead of  the linear constitutive 
relation (2.2) consider, for example, the non-linear relation 

Ri d r R d ~ P d r 
~ L  r-S77Jsj= ~ B  r---j-~rAj sgn(--77.r Aj/ ,  p > 0  
r=0 dt r=o dt ~,at ) 

(6.1) 

a natural extension of relation (3.4) to the ease ca = 0. Eliminating sj from (2.1) and (6.1), we obtain 
an equation for )9 

R d r .. ~B I]dr A p Id r ) l~t r lPsgn(~lr Aj)I ~Lr-~F(myj+~j-FJ)=r~=O ,U~t r j+, sgn ~7-Aj+ , - Aj 
r=O 

(6.2) 

Remark. There are several ways of extending the constitutive relations of the linear theory of viscoelasticity to 
the non-linear case. It can be shown that relation (6.1) is covered by the non-linear genetic theory of Liderman 
and Rozovskii (see [3, 20, 21], for example). 

If now, for a continuous medium (1.1), we write the constitutive relation 

=, a r ~ b  la r I" ( a' ) 
2~ Lr -ff77.~ ~ = 

, . o  
(6.3) 

analogous to (6.1), then by eliminating the function o from (1.1) and (6.3) we obtain the equation 

or r ol rlI rl 
L r ~-tr(Puu +flu t - f ) :  b r ~rrUx sgn ~trux 

r=0 
(6.4) 

Thus in this case the intermediate equation of  order (p + 1) for a chain is the same as the corresponding 
equation for a strongly non-linear continuous medium ff p = m/h,  11 = ~Jh, 1 = Nh,  b, = B ~ .  

It is possible to construct series of exact solutions of the form u(x, t) = ¥(x)O(t) for Eq. (6.4), as shown 
in [20]. Of  course, it is difficult to obtain rigorous assertions analogous to Theorems 1 and 2 in the non- 
linear case. Replacing a chain (6.2) by Eq. (6.4) is normally justified by means of  computer experiments. 
The same method can be used to demonstrate that this is legitimate in the case here. 

It should be emphasized that it is because exact solutions for Eq. (6.4) exist [21] that the solutions 
can be compared in this way. If Eq. (6.4) had to be  solved by a grid method, then rather than the solution 
of  Eq. (6.4), it would be the solution of  the corresponding discrete chain with respect to x and t that 
was actually sought. 

It might prove to be very difficult to conduct ananalytic investigation of the solutions of a non-linear discrete 
chain (the Fermi-Pasta-Ulam problem is a good example [13]). This is why an attempt is often made to obtain a 
continuous analogue of the original chain which is easier to analyse. In particular, the Boussinesq equation [1] can 
be used for the Fermi-Pasta-Ulam problem. 

One reason why the continuous analogue is often,easie/to analyse that the original chain is made clear by the 
following example. 

Suppose that the basic equation of motion has the form (2.1), and the constitutive relation is taken in the form 
(3.4), where Cl = 0, p > 0. After eliminating sj, w e  obtain the following equation for the displacements yj(t) 

myj = BClyj+ , - yjlPsgnCyj+,- yj )-Iy j - yj_, IP s g n ( y j -  yj_, )) (6.5) 

Suppose that the problem has fixed boundaries, that is, y0(t) = y~t )  = 0. Equation (6.5) has exact solutions 
which are of the form 

yt(t) = i(I)Q(t) (6.6) 

where the functions I and Q will be, solutions of the following problems 
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I t ( j  + ])  - t ( j ) l  p sgn(/(j + 1 ) - / ( j ) )  - 

- I t ( j ) -  t ( j  - 1)] p s g n ( / ( j ) - / ( j  - 1)) + IM(j) = 0, 1(0) : I (N)  = 0 

mQ. ( t ) + ~tblQ( t )l p sgn a (  t ) = 0 

The parameter St here plays the part of an eigenvalue. 
We will now conskler the continuous analogue of this chain in the form 

-~X m 
p u . = b  (luxlPsgn(ux)), p=-~-, b = B h  p, l = N h  

(6.7) 

(6.8) 

(6.9) 

where h is the distance between the physical points in static equilibrium. Equation (6.9) has the exact solutions of 
the form u(x, t) ffi ¥(~)0(t), where the functions ¥ and 0 will be the solutions of the following problems 

(IW'(x) I t' sgn(¥'(x)) '  + ~.W(x) = 0, ¥(0) = W(I) = 0 (6.1o) 

p0(t)+ kble(t)l p sgn(0(t)) : 0 (6.11) 

where the parameter k plays the part of an eigenvalue. 
Although Eqs (6.8) and (6.11) are  similar,  the eigenvalue problem is much more difficult for the non-linear 

difference equation (6.7) than for the non-linear differential equation (6.10) because, generally speaking,  solutions 
of non-linear d i~rence  equations, even first-order, behave in a much more complex way than those of the analogous 
differential equations (see [22], for example). 

It might therefore 1~ easier to make an analytic investigation of the solution of the continuous analogue of the 
chain than of the chain itself. 

7. A P P E N D I X  

Lemma. Let  cps(t, A) (s = 0 . . . . .  R - 1) be a fundamental solution of Eq. (4.7). Then Ax, A2 satisfy the 
inequality 

[q)s (t;A 1 ) - q~s (t;A2)[ ~< Cl [A1 - A2 [(A1Rv + 1)f~(t)exp(C2 (A2 + 1)t) 

Proof. By reducing Eq. (4.7) to a system and using Gronwall's lemma, we obtain the required inequality. 

Outline o f  the proqf  o f  Approximation Theorem 1. To simplify the calculations, we will restrict ourselves to the 
case where 

ct,.(j3 = O, r = 0  . . . . .  R - l ,  j = l  . . . . .  N - I  

The solution of Eq. (5.1) has the form 

N - l  

y j ( t )=  k=l ~" Qk(t)Ik(J); Qk(t):-~R !c~R(t-'C;llk )qk('C)aU¢' lk(j)=singkJN 

N - I  2 . nk 
j~__lFj(t)lk(J), Ixt =4sin2-~-~ -, k = l  ..... N - I  q ~t ( t ) = -7;, 

N 

(7.1) 

The solution of Eq. (4.4) has the form 

u(x,t)  : ~.e k ( t )¥k  (x) (7.2) 
k=l 

l t l 

p k ( t )= T~g (x , t )Vk (x )d x ,  k=l , . . .  
1'~,0 

(7.3) 

where yk(x), 7~ have the form (4.5). 
By virtue of the construction of the function (x, t) ~ g(x, t) we have:pk(t) = qk(t) (k ffi 1 . . . . .  N -  1),pk(t) = 0 

(k = N , . . . ) .  Thus 

N - I t  

lyj(t)-u(jh, t)l <- ~, ~I~pR(t- X;~.t )-(PR(t-'c;p.t )Ilqt(~)Idx 
k=lo 

(7.4) 
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Using the lemma with A1 = ~ A2 = I~, we obtain the required result firom (7.4). 

Out//ne o f  die proofofApprar/mafion Theorem 2. As in the proof of Theorem 1, in order to simplify the calculations 
we will restrict ourselves to the case where 13,(x) = 0, r = 0 . . . . .  R - 1:0  <~ x ~</. 

The solution of Eq. (5.1) has the form (7.1), and the solution of Eq. (4.4) has the form (7.2). In this case, however, 
the functions t -*  0k(t) defined by formula (7.3) are generally speaking no longer necessarily equal to zero for k 
~> N. Nevertheless, by virtue of the construction of the functions t --> Gj(t), we have: qk(t) = pk(t) (k = 1 . . . . .  N 
- 1). Using conditions (4.9), we obtain the bounds 

N-I ,,0 
sup ~ Iqk(t)lllk(j)l<~ sup ~ Ipk(t)lllk(j)l<~ 
t<~li) k=No+l t<~Ib k=No+l 

Thus, since 

, ,  
<~ 2 . supr " Igxx(X,t)l-W-Sf~(t)dt 

"~ ;t~10 N 0  0 
(7.5) 

N 0 
lYj (t) - u(jh, t)l <~ ~ IQk ( t ) -  0 k (t)[I ~k (jh)l + 

k=l 

N-I 
+ Y~ IOk( t ) l l lk ( j ) l+ ~ IOk(t)l lwk(jh)l  

k=N0+l k=N0+l 

using the lemma with A1 = ~Jh 2, A2 ffi I.ttJh 2 and bound (7.5), we obtain the required result. 

Remark. The difference operator (Yj+I - 2yj + Yj-1) on the fight-hand side of Eq. (5.1) can be replaced by the 
more general operator 

aqyj+q, R3~>0, R 4 > 0  
q=-e 3 

for certain coefficients aq. The proof of the theorems follow the same scheme as before if the existing eigenfunctions 
x ~ yk(x) (k -- I .... ) andj --+ Ik(j) (k = 1 ..... N- 1) here form the orthogonal systems, withy k forming a complete 
system, and yt~jh) -- Ik(j). But without explicit expressions for the eigenfunctions Yk, Ik we do not yet have effective 
criteria for testing the validity of these additional conditions. 

I should  l ike to t hank  A.  D.  Myshkis  for  useful  d iscuss ions  and  advice.  
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